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Abstract: This paper provides a fresh approach for an introductory exploration of metric spaces, illustrating methods 

for using Excel creatively to discover interesting insights into mathematics. We use diverse examples of metrics to 

provide insights into the concept of distance, and see how it arises in the areas of geometry, calculus, and other well-

known areas of mathematics. Along the way, we encounter inequalities and other aspects of classical mathematics, 

provide new problem solving and teaching techniques, and present a means of discovering patterns by employing 

spreadsheets to enhance the visual interpretation of a vital field of mathematics. 

 

1. Introduction 
 

For many years numerous people have contributed to the development of a wide range of 

creative ways to employ spreadsheets effectively in the teaching of pure and applied mathematics. 

A new opportunity for extending the scope of these endeavors arose in 2013 in developing and 

teaching an undergraduate on-line class in metric spaces for Divine Word University in Madang, 

Papua New Guinea.  

This paper describes some of those developments. Because many of our models also involve 

concepts from areas such as calculus, analysis, inequalities, geometry, and linear algebra, they not 

only provide tools for the study and teaching of metric spaces, but they also furnish new insights 

into other subjects in the mathematics and computing science curricula. We supply the underlying 

Excel 2010 files with annotations for those interested [11]-[23]. 

The use of a spreadsheet such as Microsoft Excel in our endeavors enables us to design 

mathematical models that closely follow standard ways of presenting and learning mathematics 

using software that is readily available and familiar to students. Moreover, it provides students with 

new and creative skills in applying a fundamental and highly-valued tool of the workplace. 

For this specific class, it was helpful to be able to create interesting, animated spreadsheet 

models of topics that could be used in live Internet presentations, and to largely avoid a heavy 

reliance on the traditional definition-theorem-proof teaching format. The use of Excel helped 

students in developing problem solving skills, especially in discovering patterns for the geometry of 

different metrics. It provided students with an accessible tool for examining various metrics, 

constructing geometric objects, and initiating new approaches and insights for their studying. 

During the term, students could access Excel models and extensive class notes through Moodle. 

The examples provide here can be used for at least three important purposes: 

 

• The examples provide teachers with interactive illustrations for classroom presentations. 

• The techniques form an effective means for students to discover patterns. 

• The approach presents a sound basis for individual and group student projects that 

integrate mathematical concepts and spreadsheet implementation skills. 
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2. Foundation Information 
 

Definition: A metric space consists of a set X together with a distance function, :d X X → , 

where ℝ is the space of real numbers, having the following three properties: 

 

i) 𝑑(𝑎, 𝑏) ≥ 0 for all 𝑎, 𝑏 ∈ 𝑋, with equality if and only if 𝑎 = 𝑏 

ii) 𝑑(𝑎, 𝑏) = 𝑑(𝑏, 𝑎) for all 𝑎, 𝑏 ∈ 𝑋 

iii) 𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎, 𝑐) + 𝑑(𝑐, 𝑏) for all 𝑎, 𝑏, 𝑐 ∈ 𝑋 (triangle inequality) 

 

We see these properties for distance when we look at familiar road maps. For example, Figure 

2.1 provides a stylized map and distance table for roads and towns near Martin, Tennessee, USA. 

Properties (i) and (ii) are readily apparent from the table. We can examine property (iii) either 

manually or through an interactive Excel model such as the one at the right. Here we observe that a 

smaller example for classroom illustration is easier to implement if all cities can be connected by 

straight lines. To do this, we include a virtual route from Martin to Paris, although actual travel 

goes through Dresden. We also incorporate a slightly more involved version among our Excel files. 

 

          
 

Figure 2.1. Road Map Metric 

 

The most familiar examples of metric spaces are the real numbers ℝ with distance function 

𝑑(𝑎, 𝑏) = |𝑏 − 𝑎|, the real Euclidean plane ℝ² with distance function 𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) =

√(𝑥2 − 𝑥1)2 + (𝑦1 − 𝑦2)2, and n-dimensional Euclidean space ℝn with a similar distance function. 

However, there many more interesting metric spaces for students to explore in which they will 

encounter new mathematical concepts and techniques, and for educators to design useful teaching 

visualizations. In this paper we present a few of these that we implement using Microsoft Excel 

2010. We will not prove that the metrics listed satisfy the conditions for a metric, but refer readers 

to other sources [7], [8] for these results. 

 

3. Examples of Metrics Spaces 
 

3.1. Euclidean ℝ² Metric: There are many ways to use Excel to create Euclidean metric objects in 

ℝ². For example, in Figure 3.1a we create an xy-graph of a circle by using the parametric equations 
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𝑥 = 𝑥0 + 𝑟 cos 𝑡, 𝑦 = 𝑦0 + 𝑟 sin 𝑡, 0 ≤ 𝑡 ≤ 2𝜋, thus locating the set of points whose distance from 

the point (𝑥0, 𝑦0) is r. Although Excel does not provide a direct way to fill in the interior of a closed 

curve, we do this by drawing a series of line segments, as indicated in Figure 3.1b. To fill in the 

area, we increase the number of segments and the width of the lines. By adjusting the line style for 

the boundary, in Figure 3.1c we produce the open unit disk (or ball) centered at (𝑎, 𝑏) = (1.4,1.2). 

We show an outline of our Excel worksheet and its equations in Figure 3.2. A full description of the 

methods used appears in [6] and in our annotated Excel files. 

 

 
 

Figure 3.1  Unit Circle and Open Unit Disk in ℝ². 

 

  
 

Figure 3.2 Excel Output and Formulas for Unit Circle and Disk 

 

As an illustrative example, suppose that we wish to find all points in ℝ² that are equidistant from 

two given points. For this example we first use algebra to find the points of intersection of the 

circles of radius r whose centers are the two given points. We then use those points together with 

our techniques for generating circles to form the diagram of Figure 3.3. If we then link the cell 

containing the radius to a scroll bar, we animate the creation process for drawing the perpendicular 

bisector of the segment between the two points as we increase r. Later we use this idea for a similar 

construction with another metric. Additional related examples can be found in [2], [6]. 
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Figure 3.3 Locus of Points Equidistant from Two Given Points (Euclidean) 

 

3.2.  Taxicab Metric: Let X be the real plane, ℝ², but now use the taxicab distance defined by 

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1|. The name taxicab comes from the fact that this 

measure of distance is analogous to that used for taxicabs as they traverse the streets of a city 

having a rectangular street grid, where one can travel only in horizontal or vertical directions. Thus, 

in Figure 3.4a the distance between the locations 𝑎 = (−3,2) and 𝑏 = (4, −4) is 𝑑(𝑎, 𝑏) =
|4 − (−3)| + |−4 − 2| = 13. In Figure 3.4a we also see that a trip of that length can be made in a 

variety of ways, with the intermediate corners interpreted as points lying between a and b.  

However, in this metric space we are not limited to traveling on lines with integer coordinates. 

Thus, in Figure 3.4b we see that the distance between 𝑎 = (−2.5,3.3) and 𝑏 = (4.3, −2.6) is 

𝑑(𝑎, 𝑏) = 12.7. 

 

 
Figure 3.4. Taxicab Distance 

 

In working with this metric by hand, it is convenient to use graph paper. A spreadsheet provides 

us with a similar medium through which we can gain insights before creating more advanced 

illustrations. In Figure 3.5a we show an xy-scatter chart produced from the Excel layout in Figure 

3.5b to find the points that are distance 𝑟 = 4 from point (𝑎, 𝑏) = (0,0). Columns C:D are used to 

generate a grid with gaps of size 0.5. We start by first entering C4 = D4 = –5, and then the formulas 
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C5: =IF(D4=5,0.5+C4,C4), D5: =IF(D4=5,–5,0.5+D4), and afterwards filling down the two 

columns. In Column E we compute the distance from each point to the center, and then use an =IF 

function in Columns F:G to reproduce only those (𝑥, 𝑦) values from Columns C:D whose distance 

from (𝑎, 𝑏) is r, otherwise returning NA(). We insert the values in Columns F:G into the chart, 

showing the points as green markers. We can use a similar technique to generate other structures 

such as bisectors and analogs of various conic sections. With our model we vary the values of the 

center and radius to see the resulting output and to discover patterns. In using =IF statements 

involving equality with real numbers, we need to be aware of round-off considerations. 

 

   
 

Figure 3.5. Taxicab Circle Special Layout 

 

From the observations above, it is straight-forward to discover one way to create taxicab 

“circles” or balls of radius r. A closed ball contains the boundary, while the open one contains no 

boundary points. We simply plot the four points that are located r units horizontally and vertically 

from the center and connect them with line segments (Figure 3.6). We can also verify our findings 

algebraically if desired. We fill in the interior to produce a closed ball of radius 2 using a variation 

of the technique addressed previously. 

 

 
 

Figures 3.6  Taxicab Circle with Corresponding Closed and Open Balls 

 

Finding all points that are equidistant from two given points is more difficult to do in the taxicab 

metric. A good approach is first to examine the output a grid model. We see what may be surprising 

output in Figure 3.7a. By studying patterns and realizing that the location of the two points 

influences the resulting outcome, we can produce an animated version as seen in Figures 3.7b, 

although alternate constructions are possible. 
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Figure 3.7  Locus of Points Equidistant from Two Given Points (Taxicab) 

 

From our grid model we will find a bigger surprise. Sometimes, there is a whole region of points 

that are equidistant from the two points, as in Figure 3.8a. After further investigations, we can 

discover that this happens when the horizontal and vertical distances between the points are equal. 

We can then use our discoveries to create a more sophisticated animated graph such as in Figure 

3.8b. This example is enhanced by using a scroll bar to vary r. Consult [5] to find a wealth of other 

interesting taxicab aspects to pursue. 

 

  
 

Figure 3.8  Special Case Equidistant Points 
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grid displays to discover the pattern for generating these as illustrated in Figure 3.9. We create grid 
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distances to the fixed points are a given value. By experimenting, we can see how to generate the 

taxicab ellipse from the corners of the rectangle determine by the fixed points. 

   
 

Figure 3.9 Discovering the Creation of Taxicab Ellipses 

 

As a result of our discoveries we next use our observations to create an xy-graph as in Figure 

3.10, where we also have used some creativity to show the taxicab distances from points on the 

ellipse. We then can animate our model to see how the distances vary at points around the ellipse 

by incorporating a scroll bar. We also can examine how the shape changes by varying the given 

distance. 

 

 
Figure 3.10 xy-chart of a Taxicab Ellipse 

 

3.3. Maximal Metric: In the metric space for the maximal metric we again use 𝑋 = ℝ2, but the 

distance now is given by the expression 𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = max(|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|). We can 

define a similar metric on ℝ𝑛 as follows. Let 𝑎 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), 𝑏 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛), then 

𝑑(𝑎, 𝑏) = max
𝑖=1,⋯,𝑛

|𝑥𝑖 − 𝑦𝑖|. We will notice (Figure 3.11) that balls in ℝ² are squares with sides 

parallel to the axes, while in ℝ3 they are cubes, and in ℝ𝑛 they are hyper-cubes.  
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Figure 3.11 Open Ball in Maximal Metric 

 

3.4.  lp Metrics:  With 𝑋 = ℝ2, for any real number 𝑝 ≥ 1, we define the 𝑙𝑝 metric by 

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = (|𝑥1 − 𝑥2|𝑝 + |𝑦1 − 𝑦2|𝑝)1 𝑝⁄ . If 𝑝 = 2, then we get the Euclidean metric, 

while with 𝑝 = 1 we have the taxicab metric. We can define a similar 𝑙𝑛
𝑝
 metric in ℝ𝑛 by 

𝑑((𝑥1, 𝑥2, ⋯ , 𝑥𝑛), (𝑦1, 𝑦2, ⋯ , 𝑦𝑛)) = (∑ |𝑥𝑖 − 𝑦𝑖|𝑝𝑛
𝑖=1 )1 𝑝⁄ .  As we see in Figure 3.12, with Excel we 

can create the boundary of a ball in ℝ² centered at (𝑥0, 𝑦0) with radius r much as we did for the 

Euclidean metric, via the parametric equations  

 

𝑥 = 𝑥0 + 𝑟|cos 𝑡|2 𝑝⁄ sign(cos 𝑡), 𝑦 = 𝑦0 + 𝑟|sin 𝑡|2 𝑝⁄ sign(sin 𝑡), 

 

If we link the cell for the parameter p to a scroll bar in our model, then as we increase p we see 

what are sometimes called “super ellipses”. One can prove that for 𝑝 ≥ 1 our definition satisfies the 

requirements for a metric. However, for 0 < 𝑝 < 1 this is not the case, since the triangle inequality 

fails (Figure 3.12b). Nonetheless, the curves produced for 0 < 𝑝 < 1  have geometric significance. 

For example, the curve for 𝑝 = 2 3⁄  is an astroid [2]. Figure 3.12c shows unit circles for 𝑝 =
1, 2, 4, 1000. As 𝑝 → ∞, the resulting metric approaches the 𝑙∞ metric, which is the same as the 

maximal metric. Members of the lp family of metrics are used in the fields of real analysis and 

statistics. 

 

 
 

Figure 3.12 Unit Circles in 𝑙𝑝 
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3.5.  British Rail Metric: For this metric on 𝑋 = ℝ2, the distance between two points 𝑎 = (𝑥1, 𝑦1) 

and 𝑏 = (𝑥2, 𝑦2)  is defined by using the Euclidean distance that is needed to go first from a to the 

origin and then from the origin to b. Thus, d(a,a) = 0, while for a  b,  

 

𝑑(𝑎, 𝑏) = (𝑥1
2 + 𝑦1

2)1 2⁄ + (𝑥2
2 + 𝑦2

2)1 2⁄  

 

This metric’s name is based on the British rail system, where rail line routes usually require 

traveling via London. In fact, most internal travel in Papua New Guinea on Air Niugini similarly 

requires travel via Port Moresby. Thus, the Air Niugini distance from Madang to Goroka is 

d(MAG,GKA) = d(MAG,POM) + d(POM,GKA) = 498 km. + 426 km. = 924 km., while the actual 

direct distance is only 107 km. In Figure 3.13, both the airline’s route map and its bird of paradise 

logo in were created in Excel, the latter using Euclidean circles almost exclusively. 

 

     
 

Figure 3.13  Air Niugini Flight Routes 

 

3.6. Two Additional Interesting Metrics: Here we list two more metrics that can be studied by 

students. In the first, we let the X be the set of all finite closed intervals of the real line ℝ. We define 

the distance between intervals A = [i,j] and B = [m,n] by d(A,B) = max(|i–m|,|j–n|). Figure 3.14 

illustrates the graphical output of an animated Excel model for this metric. 

 

 
 

Figure 3.14 Distance between Closed Intervals 
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Starting with d as the usual Euclidean distance on ℝ, the new distance of any point from the 

origin is −1 < 𝑑′(𝑥, 𝑦) < 1. In Figure 3.15 we use Excel to illustrate the distances from the origin 

to points on the real line as well as the triangle inequality. 

 

 

 
 

 
 

Figure 3.15 New Metric on ℝ 

 

 

3.7.  Great Circle Metric: Here we let X be the points in ℝ³ on a sphere of radius . The distance 

between points 𝑎 = (𝑥1, 𝑦1, 𝑧1) and 𝑏 = (𝑥2, 𝑦2, 𝑧2) is given by the shorter arc length of the great 

circle that passes through those points and the origin (0,0,0). Using the dot product and related 

results from calculus or linear algebra, the angle (in radians) between the radii on the great circle to 

those points is given by 𝜃 = cos−1(�⃗� ∙ �⃗⃗�) (‖�⃗�‖‖�⃗⃗�‖)⁄ , where ‖�⃗�‖ denotes the length of a vector and 

· is the dot product. Thus, 𝑑(𝑎, 𝑏) = 𝜌𝜃. Excel’s =SUMPRODUCT function gives the dot product.  

We have designed our illustrations in Figure 3.16 as rough static displays. The first one shows 

distances for coordinates with rectangular coordinates, while the second one uses longitude and 

latitude. From calculus, the relationship between spherical and rectangular coordinate systems is 

given by 𝑥 = 𝜌 sin 𝜑 cos 𝜃, 𝑦 = 𝜌 sin 𝜑 sin 𝜃, 𝑧 = 𝜌 cos 𝜑, 𝜌2 = 𝑥2 + 𝑦2 + 𝑧2. Readers are 

challenged to create a fully-animated graphical display for this model, perhaps incorporating 

drawings of geographical maps on the sphere’s surface. 
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Figure 3.16 Spherical Distances 

 

3.8.  Continuous Real Functions – Distance Metric:  Let 𝑋 = C[𝑎, 𝑏] be the set of real-valued 

continuous functions on the interval 𝑎 ≤ 𝑥 ≤ 𝑏 with metric 𝑑(𝑓1, 𝑓2) = max
𝑥∈[𝑎,𝑏]

|𝑓2(𝑥) − 𝑓1(𝑥)|. 

With this definition of distance, it can be shown that X is a metric space. The definition says that 

the distance between two functions is determined at the point, 𝑥0, where the two functions are the 

farthest apart. This is illustrated by the graph in Figure 3.17b. We use the model of Figure 3.17a for 

functions in C[0,1] to find the distance between 𝑓1(𝑥) = 𝑥 and 𝑓2(𝑥) = 𝑥𝑛, where n is a parameter 

(Cell C3) of the model. 

There are at least three ways in which we can either determine or closely estimate this distance 

between two functions:  (a) We can use calculus to compute the derivative of 𝑓1 − 𝑓2 to determine 

the maximum value of |𝑓1(𝑥) − 𝑓2(𝑥)|. We enter the calculated value of 𝑥0 in Cell E3, computing 

the distance between the functions in Cell E4. (b) We can input an estimate for the point 𝑥0 at 

which the maximum distance occurs (Cell E3), enter the distance formula in Cell E4, and then use 

Excel’s solver tool to find the maximum of E4 by varying E3. (c) We can use Column D to 

compute |𝑓1(𝑥) − 𝑓2(𝑥)| for each x, and use Excel’s =MAX function to find the greatest in Column 

D. Column E lets us find the corresponding point, 𝑥0. Of course, (c) only gives an approximation, 

since the actual 𝑥0, as the maximum will seldom be exactly one of the values in Column D. 

 

   
 

Figure 3.17  Metrics using the Maximum Distance and the Area between Functions 

 

3.9.  Continuous Real Functions – Area Metric:  Let 𝑥 = C[𝑎, 𝑏] be the space of continuous 

functions over the interval 𝑎 ≤ 𝑥 ≤ 𝑏, and 𝑑(𝑓1, 𝑓2) = ∫ |𝑓2(𝑥) − 𝑓1(𝑥)|
𝑏

𝑎
𝑑𝑥 . Thus, the distance 

between functions 𝑓1 and 𝑓2 is the net area between their graphs. We find this using calculus, 

although we could enter formulas for the areas of certain functions in advance. In the illustration of 

Figure 3.17c we have 𝑓1(𝑥) = 1 − 𝑥2 and 𝑓2(𝑥) = 0.4𝑥 − 0.68 as functions in C[−1,1]. Because 

the curves intersect, we need to compute the integral in segments. We factor 𝑓2(𝑥) − 𝑓1(𝑥) = 𝑥2 +
0.4𝑥 − 0.32 = (𝑥 + 0.8)(𝑥 − 0.4), and evaluate the following integrals to find the area. 
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4. Selected Topics from the Study of Metric Spaces 
 

Besides using Excel to illustrate and find distances for metric spaces, we can use its models to 

discover patterns, illustrate topology and geometry properties, and understand the ideas behind 

proofs of such topics as the continuity of functions, the convergence of sequences, and others 

through creative spreadsheet techniques. 

 

4.1. Open and Closed Sets: A subset S of a metric space X is open if for each 𝑥0 ∈ 𝑆 there is a real 

 > 0 for which the open ball 𝑆(𝑥0, 휀) centered at 𝑥0 is contained in S. In Euclidean ℝ space, using 

scroll bars to vary 𝑥0 and , in Figure 4.1 we illustrate the definition, by showing that the open 

interval 𝑆 = (0,1) is an open set, while (0, 1] is not. Thus, we see that for 𝑥0 = 0.8 ϵ S =  (0,1), 

with  = 0.1 the interval (𝑥0 − 휀, 𝑥0 + 휀)  S, with a similar result holding for any 𝑥0ϵ S. On the 

other hand, we notice that if 𝑥0 = 1.0 𝜖 S′ = (0,1], then no matter how small we choose , the 

interval (𝑥0 − 휀, 𝑥0 + 휀) contains points that are not in S. 

 

 
 

 
 

Figure 4.1  Open and Non-open Sets in ℝ 

 

The diagrams in Figure 4.2 come from a similar model for ℝ² in which we can vary the metric 

used in the illustration by clicking a spin button, and vary the radius of an open ball with a scroll 

bar. We see that the physical size of these balls of the same radius vary with the metric that is used. 
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Figure 4.2  Inserting an Open Ball in an Open Set for Different Metrics 

 

4.2.  Visualizing Proofs and Definitions: In a class that involves proving results, many students 

initially have difficulties in learning how to carry out, or even to understand, proofs. In a standard 

classroom, instructors typically help students to visualize these aspects by drawing images on a 

board. Although it takes more time to create similar images on Excel, doing so can allow us to 

create animated drawings that can provide additional insights into these aspects.  

In Figure 4.3a we see a drawing illustrating a step in the proof that the intersection of three open 

sets is open. Figure 4.3b illustrates how to produce an open ball centered at a given point so that it 

fits inside another open ball. Thus if the larger open ball centered at (x0,y0) has radius r0 and a point 

(x1,y1) is d units away from the center, then an open ball centered at (x1,y1) with radius r0 – d is 

contained within the larger ball. Both students and their instructors can create similar 2-dimensional 

models for a variety of theorems and illustrated by various metrics. 

 

    
 

Figure 4.3  Illustrating Proofs Concerning Open Sets 

 

In Figure 4.4 we illustrate the definition of the diameter of an arbitrary set (here using the 

Euclidean metric in ℝ²), by choosing two arbitrary points on the boundary of a set created by the 

polar equation 𝑟 = cos3𝑥 + sin3𝑥, and then using Excel’s solver to maximize the distance between 

two points, while including constraints that insure points lie on the boundary. 
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Figure 4.4  Visualizing the Diameter of a Set (before and after Solver) 

 

4.3.  Limits, Continuity, and Convergence: In this section we look at a brief selection of basic 

topics from metric spaces, calculus, and similar topics. 

We say that a sequence of points p1, p2, p3, … of a metric space X converges to a point a if for 

any ε > 0 there is a positive integer N so that if n ≥ N, then pn is in the open ball of radius ε centered 

at a. In Figure 4.5 we see a sequences of points (xn,yn) in ℝ² that converges to (1.0,2.0). If ε = 0.83, 

then all of the points pn for n ≥ 8 are contained in the open ball of radius ε centered at a (although 

some earlier elements are also in the ball), while if ε = 0.45, then all of the points pn lie in the 

required open ball if n ≥ 20, but p19 does not. Our model can be animated by attaching the cell 

containing the value of ε to a scroll bar. 

 

 

  

 

 

   
 

Figure 4.5 Convergence of a Sequence 
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One of the basic goals in an analysis course is to prove results involving limits and continuity of 

functions. In Figure 4.6 we see the output of an interactive model for illustrating that the function 

𝑓: ℝ2 → ℝ2 given by 𝑓(𝑥, 𝑦) = (𝑥2 − 𝑦2, 𝑥𝑦) is continuous at the point 𝑎 = (0.65,0.50).  

In Figure 4.6a, we generate grid points throughout the square region, −1 ≤ 𝑥 ≤ 1, −1 ≤ 𝑦 ≤ 1, 

and produce their images in Figure 4.6b. Next, we plot the points a and 𝑓(𝑎) in the respective 

graphs, and for an 휀 > 0 produce a green ball of radius  around 𝑓(𝑏) in the right graph. Next we 

choose a 𝛿 > 0, form a red/yellow ball of radius  around point a in the left graph, and then 

generate the red/yellow image of that set in the right graph. Finally, we attach a scroll bar to the cell 

that contains , and use it to adjust the value of  until the image set is contained within the green 

set. We can also do the mathematical analysis to evaluate the required δ and modify the model so it 

updates automatically when δ is changed. 

 

  
 

Figure 4.6  Interactive Illustration the Concepts of a - Proof in ℝ² 

 

We next display two versions of traditional ways to visualize a - proof of the continuity of a 

function 𝑓: ℝ → ℝ at the point 𝑥 = 2, where 𝑓(𝑥) = 𝑥2. In Figure 4.7, using the concept of limit, 

given an 휀 > 0, we see a blue open interval of radius  about 𝑓(𝑎). We then select a 𝛿 > 0 to 

produce a red open interval about a, using a scroll bar to vary  so that the image of the red interval 

lies within the blue -interval. We can also modify our model by calculating δ as a function of  so 

that the graph is updated automatically as  is varied. 
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Figure 4.7  Interactive Illustration the Concepts of a Traditional - Proof in ℝ 

 

In Figure 4.8 a second version of the previous example consists of two intervals, one for the 

domain and the other for the range. It is a one-dimensional version of the approach that we used in 

our earlier two-dimensional model. Again we vary the - and -intervals with scroll bars. 

 

 
 

Figure 4.8  Alternate Illustration of a - Proof in ℝ 

 

 

5. Classical Inequalities 
 

By its nature, the study of metric spaces involves using a variety of classical inequalities, 

especially in verifying the triangle inequality for distances. There are a number of resources 

available to both the proofs and visualization of inequalities [1], [7], [8]. Here we present two. 

First, in Figure 5.1 we show an animated geometric Excel model animated using scroll-bars for a 

two point version in ℝ² for the classical Cauchy-Schwarz inequality. Also see [10]. 

Since the white areas are equal, and the area of a trapezoid is less than or equal to a rectangle 

with the same sides, we see that for 𝑥𝑖 ≥ 0, 𝑦𝑖 ≥ 0 
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𝑥1𝑦1 + 𝑥2𝑦2 = 𝐴𝑡𝑟𝑎𝑝 ≤ √𝑥1
2 + 𝑥2

2√𝑦1
2 + 𝑦2

2, or (∑ 𝑥𝑖 𝑦𝑖)2 ≤ ∑ 𝑥𝑖
2 ∑ 𝑦𝑖

2 

  
Figure 5.1 Cauchy-Schwarz Inequality in ℝ² 

 

Next we look at Hölder’s Inequality. As a preliminary step, we illustrate Young’s Inequality [9]: 

Let f and g be strictly increasing functions on [0, ∞), with 𝑔 = 𝑓−1, and 𝑓(0) = 𝑔(0) = 0. Then 

for 𝑎, 𝑏 ≥ 0, 

 

𝑎𝑏 ≤ ∫ 𝑓(𝑥) 𝑑𝑥
𝑎

0

+ ∫ 𝑔(𝑦) 𝑑𝑦
𝑏

0

 

 

In the Figure 5.2, the curve represents 𝑦 = 𝑓(𝑥) relative to the x-axis, and 𝑥 =  𝑓−1(𝑦) relative 

to the y-axis. The yellow area gives the first integral, and the purple area is the second integral. In 

both cases shown, the area of the rectangle, ab, does not exceed the sum of the areas under the 

curves. We use the functions 𝑓(𝑥) = 𝑥2 and 𝑔(𝑦) = 𝑦1 2⁄  in the illustration. 

 

   
 

Figure 5.2  Young’s Inequality 

 

Then, if 𝑝 > 1, let 𝑓(𝑥) =  𝑥𝑝−1 and 𝑔(𝑦) = 𝑦1 (𝑝−1)⁄ . Next, using Young’s inequality with 𝑞 =
𝑝 (𝑝 − 1)⁄ , we have (1 𝑝⁄ ) + (1 𝑞⁄ ) = 1 and 
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𝑎𝑏 ≤ ∫ 𝑥𝑝−1 𝑑𝑥 + ∫ 𝑦1 𝑝−1⁄ 𝑑𝑦 =
𝑎𝑝

𝑝
+

𝑝 − 1

𝑝

𝑏

0

𝑎

0

𝑏𝑝 (𝑝−1)⁄ =
𝑎𝑝

𝑝
+

𝑏𝑞

𝑞
 

 

with equality when 𝑎𝑝 = 𝑏𝑞. 

Now let  

𝐴 = (∑|𝑎𝑖|
𝑝

𝑛

𝑖=1

)

1 𝑝⁄

and  𝐵 =  (∑|𝑏𝑖|
𝑞

𝑛

𝑖=1

)

1 𝑞⁄

 

 

With 𝑎 = |𝑎𝑖| 𝐴⁄ , 𝑏 = |𝑏𝑖| 𝐵⁄  and (1 𝑝⁄ ) + (1 𝑞⁄ ) = 1, 𝑝 > 1, 𝑞 > 1, 
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so that summing these terms 
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Multiplying by AB then gives Hölder’s inequality 

 

∑|𝑎𝑖𝑏𝑖|

𝑛
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𝑛

𝑖=1

)

1 𝑞⁄

 

 

 

6. Some Related Projects 
 

There is a large range of other metrics to examine [4]. For projects, readers can consult the 

references for both metric spaces and other topics. Also, books on operations research, calculus, 

and geometry can provide other distance-related topics. We indicate some of these examples below. 

Figure 6.1 illustrates an algorithm to find the minimum distance from an initial node, S, to 

additional nodes in a network. One can design an interactive diagram, either with user-entered 

selections at each stage of an algorithm, or completely computed by the spreadsheet. The field of 

operations research provides us with a large selection of such applications. Figure 6.2 shows 

animated Excel classical physical Euclidean constructions. 
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Figure 6.1 Minimal Distance Network Algorithm 

 

    
 

Figure 6.2 Two Geometric Constructions 
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